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It is shown that we can associate with the lattice L of subspaces of a separable 
Hilbert space an axiomatic theory in sentential logic that reflects some of the basic 
properties of the simplest types of experimental reports in quantum mechanics. It 
is also shown that every collection of mutually nonorthogonal elements of L 
determines a model of the axioms and that, if the Hilbert space is finite 
dimensional, every model is determined this way. 

1. THE PROBLEM 

It was shown in Malhas (1987) and later in Malhas (1992) that lattices 
o f  propositions isomorphic to L, the lattice of  subspaces of  a separable Hilbert 
space, arise quite naturally within classical sentential logic as the posets o f  
theories. We shall not be concerned with the concept  of  "the poset of  a 
theory" in this paper, but with the fact that two different theories were 
proposed, the poset o f  each of  which is isomorphic to L. The theories are 
different because one is a so-called "theory with orthocomplementat ion" 
while the other is not. In each case the theory was obtained as the theory of  
a set of  valuations (equivalently, models). In Malhas (1987) the set of  models 
was determined by the set o f  all pairs of  mutually nonorthogonal  atoms of  
L. In Malhas (1992) each model  was determined by a single atom of  L. The 
two theories, as sets of  formulas, have a nonempty intersection containing 
some nontrivial elements, i.e., formulas which are not tautologies. In what 
follows we study the theory ~- whose axioms are these c o m m o n  nontrivial 
formulas. In particular we characterize the class of  all models o f  ~-. It turns 
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out that every nonempty collection of pairwise nonorthogonal elements, not 
necessarily atoms, of L determines a model of the theory and, if L is the 
lattice of subspaces of a finite-dimensional Hilbert space, then every model 
arises in this way. A discussion of the physical significance of this fact is 
beyond the scope of this paper and is currently under preparation. 

2. NOTATION AND S E T T I N G  

Let L be the lattice of projections on a separable Hilbert space. Quantum 
mechanics provides "quantization rules" which assign an L-valued measure 
/~ to each observable p (of the appropriate physical system) (Mackey, 1963 
p. 68). For example, the x component of momentum is associated with 
the L-valued measure which, by the spectral theorem, corresponds to the 
differential operator (h/i) O/Ox. If for every Borel set E of the reals we think 
of the ordered pair (p, E) as a symbol representing the simple experimental 
report [or, as Jauch (1964) called it, a "yes -no  experiment"] 

The value of the observable p is in E 

then the quantization rules alluded to above induce a correspondence between 
simple experimental reports and elements of L 

(p, E) ~ /~(E) 

This mapping is not one-one:  We can always find a new observable q 
and a Borel set G such that/~(E) = O(G). Let F be the set of all observables 
and B be the set of all Borel subsets of .qt. Then the set of all simple 
experimental reports is U = F • B. We take U to be the set of all sentence 
symbols (Chang and Keisler, 1973), or, as we shall also call them, initial 
formulas of a sentential language. The "compound" formulas of the language 
are obtained from the initial formulas by applying logical connectives -,, ~ ,  
r ^, v . . . .  to the initial formulas in the reasonable and well-known way. 
Let W be the set of all, initial and compound, formulas. Of course we must 
not confuse (p, E U G) with (p, E) v (p, G). The first is an initial formula, 
whereas the second is a compound formula. Similarly, we must not confuse 
(p, E')  with -~(p, E) or (p, E f-I G) with (p, E)/x (p, G). 

A model is simply a subset of U (Chang and Keisler, 1973). If oL E W 
and M is a model, then we write M ~ o~ to express the idea that "eL is true 
in M" or that "M is a model of a"  and we write M ~ cx to indicate that M 
is not a model of ~x. The recursive definition of the symbol ~ is as follows: 

�9 For alloL E W, ifcx ~ U, t h e n M ~  c~iffo~ ~ M. 
�9 For alle~ E W , M ~ - ~ c x i f f M ~  cx. 
�9 For all c~, 13 ~ W, M ~ (c~ ~ [3) i f f M  ~ [3 whenever M ~ c~. 
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The meaning of M ~ a <) p, where (> is any binary connective, can easily 
be worked out from the above recursive definition, because any O can be 
defined in terms of - ' ,  ~ .  For example, c~ v 13 means -~c~ ~ [3. If  50 C_ W, 
we write M ~ S ~ iff every member  of 50 is true in M and say that M is a 
model of 50. If  every model of 5 ~ is a model of  a e W, then we say that 
is a logical consequence of 50. A closed theory is a subset ff of  W such that 
if c~ e W is a logical consequence of 9 ,  then c~ e ft. In what follows we 
shall freely use the fact that sentential logic is both sound and adequate, i.e., 
that the formula a is a logical consequence of a set 50 of assumption formulas 
iff a is derivable from 50. 

3. A X I O M S  

We shall use the quantization rules to set up a consistent axiomatic 
theory in the language of sentential logic. This theory is a description, in 
axiomatic form, of some basic elements of the observational foundations of 
quantum mechanics, i.e., a description of the logical structure of  the set of  
y e s - n o  experiments. A formula 7 is an axiom of the theory iff it satisfies 
one of the following conditions: 

al .  ~/ = (p, E), where p e F and E e B and/~(E) = 1 the identity 
position. 

a2. 7 = ((p, E) ~ (q, G)), where p, q e F and E, G e B and/~(E) 
- ~(G) 

a3. 7 = ((P, E) ~ -~(q, G)), where p, q e F and E, G ~ B andp(E)  
3- ~(G) where 3_ denotes orthogonality in L. 

From here on, the axioms specified by (a l ) - (a3)  will be referred to 
simply as the axioms. To refer to one of the three types of axioms we shall 
refer to the axioms of type al  (or a2 or a3). 

Theorem 1. For any observable p, -~(p, 0) is derivable from the axioms. 

Proof/~(~J) 3_ p (~ ) .  Thus (p, ,~) ~ -~(p, 9) is an axiom. But (p, ~ )  
is an axiom, by al .  By Modus Ponens -~(p, fl) is derivable. [] 

Let ~- be the set of all formulas derivable from the axioms. Then ~- is 
a closed theory. We call ~- the theory associated with L. 

4. M O D E L S  

For all x, y e L, if x is not orthogonal to y we write x J_' y. A nonempty 
set C of elements of L shall be called a cluster iff Vx, y e C, x l '  y. Note 



1556 Malhas 

that no cluster contains the 0 of L, since 0 is orthogonal to every element. 
Each cluster C determines a set Me C U given by 

Mc = {(p, E) ~ U: x --< p(E) for some x ~ C} (1) 

Theorem 2. For every cluster C, Mc is a model of the axioms. 

Proof Let C be a cluster. Let x be any member of C and suppose ~r is 
an axiom of type al.  Then "y = (p, E) and/3(E) = 1. Since/3(E) = 1, we 
have x --< p(E). Thus ~ E Mc. 

Now suppose that 3, is of the type a2. Then ~/ = (c~ ~ [3), where o~ = 
(p, E), [3 = (q, G), and fi(E) -< O(G). Hence for every x e C, if x <- l~(E), 
then x <-- O(G). This implies that Me ~ [3 whenever Me ~ a. Thus Me 
(~ ~ 13). 

Finally, suppose ",/is of the type a3. Then ~/ = (a ~ -~[3), where a = 
(p, E) and [3 = (q, G) and/3(E) 3_ 0(G). Then there do not exist elements 
x, y E C such that x ---/~(E) and y - 0(G), because the elements of C are 
mutually nonorthogonal, whereas/~(E) is orthogonal to 0(G). Thus if Mc 
(p, E), then Mc ~ (q, E). Therefore Mc ~ (e~ ~ -~ [3). [] 

We see that every cluster determines a model of the axioms. We also 
see that our axioms are consistent because clusters and, hence, models of 
the axioms exist. 

5. MAIN RESULTS 

Does every model of the axioms arise from a cluster as above? We can 
only give a partial answer here. The answer is "yes" if, as we shall now 
assume, L is the lattice of projections on afinite-dimensional Hilbert space. 
Let M be a model of the axioms. 

Lemma 1. For all initial formulas (p, E), if/~(E) = 0, then (p, E) ~ M. 

Proof If p(E) = 0, then p(E) 3_ p (~) .  Thus, by a3, (p, ,~) ~ -~(p, E) 
is an axiom. But by al,  (p, ~ )  is an axiom. Then, by Modus Ponens, -~(p, 
E) is derivable. Thus M N "~(p, E). By the definition of ~,  (p, E) ~ M. [] 

An initial formula (p, E) ~ M is said to be minimal in M if for every 
(q, G) ~ M, O(G) <- 13(E) implies O(G) =/~(E). Let XM be the set of all x 

L such that x =/~(E) and (p, E) ~ M. 

Lemma 2. Minimal formulas in M exist. 

Proof Every chain in XM has finite length because ~ is finite dimen- 
sional. Every chain in XM is contained in a chain, in XM, of maximal length. 
Select a chain, in XM, of maximal length and let y be its minimal element. 
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Then y = O(G) for some (q, G) E M and, by Lemma 1, y 4: 0. Clearly 
(q, G) is minimal for M. [] 

Lemma 3. For all p, q e F and E, G e B, if (p, E) and (q, G) are 
minimal formulas in M, then/)(E) •  O(G). 

Proof Suppose to the contrary that/~(E) • O(G). By a3, (p, E) ~ ~(q, 
G) is an axiom. Thus M N ((p, E) ~ -~(q, G)). This implies that if (p, E) 

M, then (q, G) ~ M, contradicting the hypothesis that (p, E) and (q, G) 
are minimal formulas in M and, therefore, are both in M. �9 

Let D = {x E L: x =/~(E), where (p, E) is a minimal element in M }. 

Lemma 4. The set D is a cluster. 

Proof The elements of D are, by Lemma 3, pairwise nonorthogonal. 
Thus D is a cluster. [] 

Since D is a cluster, it determines a model of the axioms. This model 
is obtained from equation (1) by replacing C by D and using Theorem 2. 
Thus the model of the axioms determined by D is MD = {(p, E) e U: x -< 
/~(E) for some x E D}. 

Lemma 5. M C__ Mo. 

Proof Suppose (q, G) ~ M. If (q, G) is minimal, then (q, G) is in M o. 
If (q, G) is not minimal, then there is a minimal formula (r, F) in M such 
that ~(F) E D and P(F) -< 0(G) and we have (q, G) e MD. [] 

Lemma 6. MD C_ M. 

Proof Suppose (q, G) e Mo. Then, from the definitions of MD and D, 
~(F) <-- gl(G) for some minimal formula (r, F). Thus (r, F) ~ M and ~(F) 

0(G). By al ,  (r, F)  ~ (q, G) is an axiom. Since M is a model, we have 
M ~ ((r, F)  ~ (q, G)). From the definition of ~ we have that M ~ (q, G) 
whenever M N (r, F). From the same definition, again, we have (q, G) 
M if (r, F)  E M. But we have already deduced that (r, F)  ~ M. Thus 
(q, G) E M. [] 

The next theorem is our main result. 

Theorem 3. AID = M. 

Proof By Lemma 5 and Lemma 6. [] 

We have seen that every cluster determines a model of the axioms and 
that every model of the axioms arises from a cluster. Clusters provide all the 
models of the axioms. 
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